Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using a grass substrate to compare decay among two clades of brown rot fungi.

Identifieur interne : 002427 ( Main/Exploration ); précédent : 002426; suivant : 002428

Using a grass substrate to compare decay among two clades of brown rot fungi.

Auteurs : Justin T. Kaffenberger [États-Unis] ; Jonathan S. Schilling

Source :

RBID : pubmed:23917637

Descripteurs français

English descriptors

Abstract

Interest in the mechanisms of wood-degrading fungi has grown in tandem with lignocellulose bioconversion efforts, yet many potential biomass feedstocks are non-woody. Using corn stover (Zea mays) as a substrate, we tracked degradative capacities among brown rot fungi from the Antrodia clade, including Postia placenta, the first brown rot fungus to have its genome sequenced. Decay dynamics were compared against Gloeophyllum trabeum from the Gloeophyllum clade. Weight loss induced by P. placenta (6.2 %) and five other Antrodia clade isolates (average 7.4 %) on corn stalk after 12 weeks demonstrated inefficiency among these fungi, relative to decay induced by G. trabeum (44.4 %). Using aspen (Populus sp.) as a woody substrate resulted in, on average, a fourfold increase in weight loss induced by Antrodia clade fungi, while G. trabeum results matched those on stover. The sequence and trajectories of chemical constituent losses differed as a function of substrate but not fungal clade. Instead, chemical data suggest that characters unique to stover limit decay by the Antrodia clade, rather than disparities in growth rate or extractives toxicity. High p-coumaryl lignin content, lacking the methoxy groups characteristically cleaved during brown rot, is among potential rate-distinguishing characters in grasses. This ineptitude among Antrodia clade fungi on grasses was supported by meta-analysis of other unrelated studies using grass substrates. Concerning application, results expose a problem if adopting the strategy of the model decay fungus P. placenta to treat corn stover, a widely available plant feedstock. Overall, the results insinuate phylogenetically distinct modes of brown rot and demonstrate the benefit of using non-woody substrates to probe wood degradation mechanisms.

DOI: 10.1007/s00253-013-5142-0
PubMed: 23917637


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using a grass substrate to compare decay among two clades of brown rot fungi.</title>
<author>
<name sortKey="Kaffenberger, Justin T" sort="Kaffenberger, Justin T" uniqKey="Kaffenberger J" first="Justin T" last="Kaffenberger">Justin T. Kaffenberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, MN, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, MN, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schilling, Jonathan S" sort="Schilling, Jonathan S" uniqKey="Schilling J" first="Jonathan S" last="Schilling">Jonathan S. Schilling</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23917637</idno>
<idno type="pmid">23917637</idno>
<idno type="doi">10.1007/s00253-013-5142-0</idno>
<idno type="wicri:Area/Main/Corpus">002510</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002510</idno>
<idno type="wicri:Area/Main/Curation">002510</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002510</idno>
<idno type="wicri:Area/Main/Exploration">002510</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using a grass substrate to compare decay among two clades of brown rot fungi.</title>
<author>
<name sortKey="Kaffenberger, Justin T" sort="Kaffenberger, Justin T" uniqKey="Kaffenberger J" first="Justin T" last="Kaffenberger">Justin T. Kaffenberger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, MN, 55108, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, MN, 55108</wicri:regionArea>
<wicri:noRegion>55108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schilling, Jonathan S" sort="Schilling, Jonathan S" uniqKey="Schilling J" first="Jonathan S" last="Schilling">Jonathan S. Schilling</name>
</author>
</analytic>
<series>
<title level="j">Applied microbiology and biotechnology</title>
<idno type="eISSN">1432-0614</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (growth & development)</term>
<term>Basidiomycota (metabolism)</term>
<term>Coriolaceae (growth & development)</term>
<term>Coriolaceae (metabolism)</term>
<term>Culture Media (chemistry)</term>
<term>Mycology (methods)</term>
<term>Poaceae (metabolism)</term>
<term>Poaceae (microbiology)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Zea mays (metabolism)</term>
<term>Zea mays (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (croissance et développement)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Coriolaceae (croissance et développement)</term>
<term>Coriolaceae (métabolisme)</term>
<term>Milieux de culture (composition chimique)</term>
<term>Mycologie (méthodes)</term>
<term>Poaceae (microbiologie)</term>
<term>Poaceae (métabolisme)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Zea mays (microbiologie)</term>
<term>Zea mays (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Milieux de culture</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Basidiomycota</term>
<term>Coriolaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Basidiomycota</term>
<term>Coriolaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
<term>Coriolaceae</term>
<term>Poaceae</term>
<term>Populus</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Mycology</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Poaceae</term>
<term>Populus</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Poaceae</term>
<term>Populus</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
<term>Coriolaceae</term>
<term>Poaceae</term>
<term>Populus</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Mycologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interest in the mechanisms of wood-degrading fungi has grown in tandem with lignocellulose bioconversion efforts, yet many potential biomass feedstocks are non-woody. Using corn stover (Zea mays) as a substrate, we tracked degradative capacities among brown rot fungi from the Antrodia clade, including Postia placenta, the first brown rot fungus to have its genome sequenced. Decay dynamics were compared against Gloeophyllum trabeum from the Gloeophyllum clade. Weight loss induced by P. placenta (6.2 %) and five other Antrodia clade isolates (average 7.4 %) on corn stalk after 12 weeks demonstrated inefficiency among these fungi, relative to decay induced by G. trabeum (44.4 %). Using aspen (Populus sp.) as a woody substrate resulted in, on average, a fourfold increase in weight loss induced by Antrodia clade fungi, while G. trabeum results matched those on stover. The sequence and trajectories of chemical constituent losses differed as a function of substrate but not fungal clade. Instead, chemical data suggest that characters unique to stover limit decay by the Antrodia clade, rather than disparities in growth rate or extractives toxicity. High p-coumaryl lignin content, lacking the methoxy groups characteristically cleaved during brown rot, is among potential rate-distinguishing characters in grasses. This ineptitude among Antrodia clade fungi on grasses was supported by meta-analysis of other unrelated studies using grass substrates. Concerning application, results expose a problem if adopting the strategy of the model decay fungus P. placenta to treat corn stover, a widely available plant feedstock. Overall, the results insinuate phylogenetically distinct modes of brown rot and demonstrate the benefit of using non-woody substrates to probe wood degradation mechanisms. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23917637</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>03</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-0614</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>97</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Applied microbiology and biotechnology</Title>
<ISOAbbreviation>Appl Microbiol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Using a grass substrate to compare decay among two clades of brown rot fungi.</ArticleTitle>
<Pagination>
<MedlinePgn>8831-40</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00253-013-5142-0</ELocationID>
<Abstract>
<AbstractText>Interest in the mechanisms of wood-degrading fungi has grown in tandem with lignocellulose bioconversion efforts, yet many potential biomass feedstocks are non-woody. Using corn stover (Zea mays) as a substrate, we tracked degradative capacities among brown rot fungi from the Antrodia clade, including Postia placenta, the first brown rot fungus to have its genome sequenced. Decay dynamics were compared against Gloeophyllum trabeum from the Gloeophyllum clade. Weight loss induced by P. placenta (6.2 %) and five other Antrodia clade isolates (average 7.4 %) on corn stalk after 12 weeks demonstrated inefficiency among these fungi, relative to decay induced by G. trabeum (44.4 %). Using aspen (Populus sp.) as a woody substrate resulted in, on average, a fourfold increase in weight loss induced by Antrodia clade fungi, while G. trabeum results matched those on stover. The sequence and trajectories of chemical constituent losses differed as a function of substrate but not fungal clade. Instead, chemical data suggest that characters unique to stover limit decay by the Antrodia clade, rather than disparities in growth rate or extractives toxicity. High p-coumaryl lignin content, lacking the methoxy groups characteristically cleaved during brown rot, is among potential rate-distinguishing characters in grasses. This ineptitude among Antrodia clade fungi on grasses was supported by meta-analysis of other unrelated studies using grass substrates. Concerning application, results expose a problem if adopting the strategy of the model decay fungus P. placenta to treat corn stover, a widely available plant feedstock. Overall, the results insinuate phylogenetically distinct modes of brown rot and demonstrate the benefit of using non-woody substrates to probe wood degradation mechanisms. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kaffenberger</LastName>
<ForeName>Justin T</ForeName>
<Initials>JT</Initials>
<AffiliationInfo>
<Affiliation>Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, Saint Paul, MN, 55108, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schilling</LastName>
<ForeName>Jonathan S</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Appl Microbiol Biotechnol</MedlineTA>
<NlmUniqueID>8406612</NlmUniqueID>
<ISSNLinking>0175-7598</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055453" MajorTopicYN="N">Coriolaceae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009172" MajorTopicYN="N">Mycology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>07</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>3</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23917637</ArticleId>
<ArticleId IdType="doi">10.1007/s00253-013-5142-0</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Schilling, Jonathan S" sort="Schilling, Jonathan S" uniqKey="Schilling J" first="Jonathan S" last="Schilling">Jonathan S. Schilling</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Kaffenberger, Justin T" sort="Kaffenberger, Justin T" uniqKey="Kaffenberger J" first="Justin T" last="Kaffenberger">Justin T. Kaffenberger</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002427 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002427 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23917637
   |texte=   Using a grass substrate to compare decay among two clades of brown rot fungi.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23917637" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020